276 research outputs found

    High HIV Prevalence Among Men Who have Sex with Men in Soweto, South Africa: Results from the Soweto Men’s Study

    Get PDF
    The Soweto Men’s Study assessed HIV prevalence and associated risk factors among MSM in Soweto, South Africa. Using respondent driven sampling (RDS) recruitment methods, we recruited 378 MSM (including 15 seeds) over 30 weeks in 2008. All results were adjusted for RDS sampling design. Overall HIV prevalence was estimated at 13.2% (95% confidence interval 12.4–13.9%), with 33.9% among gay-identified men, 6.4% among bisexual-identified men, and 10.1% among straight-identified MSM. In multivariable analysis, HIV infection was associated with being older than 25 (adjusted odds ratio (AOR) 3.8, 95% CI 3.2–4.6), gay self-identification (AOR 2.3, 95% CI 1.8–3.0), monthly income less than ZAR500 (AOR 1.4, 95% CI 1.2–1.7), purchasing alcohol or drugs in exchange for sex with another man (AOR 3.9, 95% CI 3.2–4.7), reporting any URAI (AOR 4.4, 95% CI 3.5–5.7), reporting between six and nine partners in the prior 6 months (AOR 5.7, 95% CI 4.0–8.2), circumcision, (AOR 0.2, 95% CI 0.1–0.2), a regular female partner (AOR 0.2, 95% CI 0.2–0.3), smoking marijuana in the last 6 months (AOR 0.6, 95% CI 0.5–0.8), unprotected vaginal intercourse in the last 6 months (AOR 0.5, 95% CI 0.4–0.6), and STI symptoms in the last year (AOR 0.7, 95% CI 0.5–0.8). The results of the Soweto Men’s Study confirm that MSM are at high risk for HIV infection, with gay men at highest risk. HIV prevention and treatment for MSM are urgently needed

    Top Quark Seesaw, Vacuum Structure and Electroweak Precision Constraints

    Get PDF
    We present a complete study of the vacuum structure of Top Quark Seesaw models of the Electroweak Symmetry Breaking, including bottom quark mass generation. Such models emerge naturally from extra dimensions. We perform a systematic gap equation analysis and develop an improved broken phase formulation for including exact seesaw mixings. The composite Higgs boson spectrum is studied in the large-N_c fermion-bubble approximation and an improved renormalization group approach. The theoretically allowed parameter space is restrictive, leading to well-defined predictions. We further analyze the electroweak precision constraints. Generically, a heavy composite Higgs boson with a mass of ~1TeV is predicted, yet fully compatible with the precision data.Comment: 73 pages, 26 Figures, Latex2e (minor refinements, one Fig added

    A Real-Time PCR Antibiogram for Drug-Resistant Sepsis

    Get PDF
    Current molecular diagnostic techniques for susceptibility testing of septicemia rely on genotyping for the presence of known resistance cassettes. This technique is intrinsically vulnerable due to the inability to detect newly emergent resistance genes. Traditional phenotypic susceptibility testing has always been a superior method to assay for resistance; however, relying on the multi-day growth period to determine which antimicrobial to administer jeopardizes patient survival. These factors have resulted in the widespread and deleterious use of broad-spectrum antimicrobials. The real-time PCR antibiogram, described herein, combines universal phenotypic susceptibility testing with the rapid diagnostic capabilities of PCR. We have developed a procedure that determines susceptibility by monitoring pathogenic load with the highly conserved 16S rRNA gene in blood samples exposed to different antimicrobial drugs. The optimized protocol removes heme and human background DNA from blood, which allows standard real-time PCR detection systems to be employed with high sensitivity (<100 CFU/mL). Three strains of E. coli, two of which were antimicrobial resistant, were spiked into whole blood and exposed to three different antibiotics. After real-time PCR-based determination of pathogenic load, a ΔCt<3.0 between untreated and treated samples was found to indicate antimicrobial resistance (P<0.01). Minimum inhibitory concentration was determined for susceptible bacteria and pan-bacterial detection was demonstrated with 3 Gram-negative and 2 Gram-positive bacteria. Species identification was performed via analysis of the hypervariable amplicons. In summary, we have developed a universal diagnostic phenotyping technique that assays for the susceptibility of drug-resistant septicemia with the speed of PCR. The real-time PCR antibiogram achieves detection, susceptibility testing, minimum inhibitory concentration determination, and identification in less than 24 hours

    Common genetic variation in the Estrogen Receptor Beta (ESR2) gene and osteoarthritis: results of a meta-analysis

    Get PDF
    Background: The objective of this study was to examine the relationship between common genetic variation of the ESR2 gene and osteoarthritis.Methods: In the discovery study, the Rotterdam Study-I, 7 single nucleotide polymorphisms (SNPs) were genotyped and tested for association with hip (284 cases, 2772 controls), knee (665 cases, 2075 controls), and hand OA (874 cases, 2184 controls) using an additive model. In the replication stage one SNP (rs1256031) was tested in an additional 2080 hip, 1318 knee and 557 hand OA cases and 4001, 2631 and 1699 controls respectively. Fixed- and random-effects meta-analyses were performed over the complete dataset including 2364 hip, 1983 knee and 1431 hand OA cases and approximately 6000 controls.Results: The C allele of rs1256031 was associated with a 36% increased odds of hip OA in women of the Rotterdam Study-I (OR 1.36, 95% CI 1.08-1.70, p = 0.009). Haplotype analysis and analysis of knee- and hand OA did not give additional information. With the replication studies, the meta-analysis did not show a significant effect of this SNP on hip OA in the total population (OR 1.06, 95% CI 0.99-1.15, p = 0.10). Stratification according to gender did not change the results. In this study, we had 80% power to detect an odds ratio of at least 1.14 for hip OA (α = 0.05).Conclusion: This study showed that common genetic variation in the ESR2 gene is not likely to influence the risk of osteoarthritis with effects smaller than a 13% increase

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Novel genetic variants associated with lumbar disc degeneration in northern Europeans: A meta-analysis of 4600 subjects

    Get PDF
    Objective: Lumbar disc degeneration (LDD) is an important cause of low back pain, which is a common and costly problem. LDD is characterised by disc space narrowing and osteophyte growth at the circumference of the disc. To date, the agnostic search of the genome by genome-wide association (GWA) to identify common variants associated with LDD has not been fruitful. This study is the first GWA meta-analysis of LDD. Methods: We have developed a continuous trait based on disc space narrowing and osteophytes growth which is measurable on all forms of imaging (plain radiograph, CT scan and MRI) and performed a meta-analysis of five cohorts of Northern European extraction each having GWA data imputed to HapMap V.2. Results: This study of 4600 individuals identified four single nucleotide polymorphisms with p<5×10-8, the threshold set for genome-wide significance. We identified a variant in the PARK2 gene (p=2.8×10-8) associated with LDD. Differential methylation at one CpG island of the PARK2 promoter was observed in a small subset of subjects (β=8.74×10-4, p=0.006). Conclusions: LDD accounts for a considerable proportion of low back pain and the pathogenesis of LDD is poorly understood. This work provides evidence of association of the PARK2 gene and suggests that methylation of the PARK2 promoter may influence degeneration of the intervertebral disc. This gene has not previously been considered a candidate in LDD and further functional work is needed on this hitherto unsuspected pathway. Copyright Article author (or their employer) 2012

    Novel Genetic Variants for Cartilage Thickness and Hip Osteoarthritis

    Get PDF
    Osteoarthritis is one of the most frequent and disabling diseases of the elderly. Only few genetic variants have been identified for osteoarthritis, which is partly due to large phenotype heterogeneity. To reduce heterogeneity, we here examined cartilage thickness, one of the structural components of joint health. We conducted a genome-wide association study of minimal joint space width (mJSW), a proxy for cartilage thickness, in a discovery set of 13,013 participants from five different cohorts and replication in 8,227 individuals from seven independent cohorts. We identified five genome-wide significant (GWS, P≤5·0×10−8) SNPs annotated to four distinct loci. In addition, we found two additional loci that were significantly replicated, but results of combined meta-analysis fell just below the genome wide significance threshold. The four novel associated genetic loci were located in/near TGFA (rs2862851), PIK3R1 (rs10471753), SLBP/FGFR3 (rs2236995), and TREH/DDX6 (rs496547), while the other two (DOT1L and SUPT3H/RUNX2) were previously identified. A systematic prioritization for underlying causal genes was performed using diverse lines of evidence. Exome sequencing data (n = 2,050 individuals) indicated that there were no rare exonic variants that could explain the identified associations. In addition, TGFA, FGFR3 and PIK3R1 were differentially expressed in OA cartilage lesions versus non-lesioned cartilage in the same individuals. In conclusion, we identified four novel loci (TGFA, PIK3R1, FGFR3 and TREH) and confirmed two loci known to be associated with cartilage thickness.The identified associations were not caused by rare exonic variants. This is the first report linking TGFA to human OA, which may serve as a new target for future therapies
    corecore